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SUMMARY

Tissue culture of immortal cell strains from diseased
patients is an invaluable resource for medical re-
search but is largely limited to tumor cell lines or
transformed derivatives of native tissues. Here we
describe the generation of induced pluripotent
stem (iPS) cells from patients with a variety of genetic
diseases with either Mendelian or complex inheri-
tance; these diseases include adenosine deaminase
deficiency-related severe combined immunodefi-
ciency (ADA-SCID), Shwachman-Bodian-Diamond
syndrome (SBDS), Gaucher disease (GD) type III,
Duchenne (DMD) and Becker muscular dystrophy
(BMD), Parkinson disease (PD), Huntington disease
(HD), juvenile-onset, type 1 diabetes mellitus (JDM),
Down syndrome (DS)/trisomy 21, and the carrier
state of Lesch-Nyhan syndrome. Such disease-spe-
cific stem cells offer an unprecedented opportunity
to recapitulate both normal and pathologic human
tissue formation in vitro, thereby enabling disease
investigation and drug development.

INTRODUCTION

Cell culture has been the backbone of basic biomedical research

for many decades, and countless insights into both normal and

pathologic cellular processes have been gleaned by studying

human cells explanted in vitro. Most of the human cell lines in

wide use today carry genetic and epigenetic artifacts of accom-

modation to tissue culture and are derived either from malignant
tissues or are genetically modified to drive immortal growth

(Grimm, 2004). Primary human cells have a limited life span in

culture, a constraint that thwarts inquiry into the regulation of tis-

sue formation, regeneration, and repair. Indeed, many human

cell types have never faithfully been adapted for growth

in vitro, and the lack of accessible models of normal and patho-

logic tissue formation has rendered many important questions in

human development and disease pathogenesis inaccessible.

Human embryonic stem cells isolated from excess embryos

from in vitro fertilization clinics represent an immortal propaga-

tion of pluripotent cells that theoretically can generate any cell

type within the human body (Lerou et al., 2008; Murry and Keller,

2008). Human embryonic stem cells allow investigators to ex-

plore early human development through in vitro differentiation,

which recapitulates aspects of normal gastrulation and tissue

formation. Embryos shown to carry genetic diseases by virtue

of preimplantation genetic diagnosis (PGD; genetic analysis of

single blastomeres obtained by embryo biopsy) can yield stem

cell lines that model single-gene disorders (Verlinsky et al.,

2005), but the vast majority of diseases that show more complex

genetic patterns of inheritance are not represented in this pool.

A tractable method for establishing immortal cultures of plu-

ripotent stem cells from diseased individuals would not only fa-

cilitate disease research but also lay a foundation for producing

autologous cell therapies that would avoid immune rejection

and enable correction of gene defects prior to tissue reconstitu-

tion. One strategy for producing autologous, patient-derived

pluripotent stem cells is somatic cell nuclear transfer (NT). In

a proof of principle experiment, NT-embryonic stem (ES) cells

generated from mice with genetic immunodeficiency were

used to combine gene and cell therapy to repair the genetic de-

fect (Rideout et al., 2002). To date, NT has not proven success-

ful in the human and, given the paucity of human oocytes, is
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Table 1. iPS Cells Derived from Somatic Cells of Patients with Genetic Disease

Name Disease Molecular Defect Donor Cell Age Sex

ADA ADA-SCID GGG >AGG, exon 7 and Del(GAAGA)

exon 10, ADA gene

Fibroblast 3 M Male

GD Gaucher disease type III AAC > AGC, exon 9, G-insertion,

nucleotide 84 of cDNA, GBA gene

Fibroblast 20 Y Male

DMD Duchenne muscular dystrophy Deletion of exon 45–52, dystrophin gene Fibroblast 6 Y Male

BMD Becker muscular dystrophy Unidentified mutation in dystrophin Fibroblast 38 Y Male

DS1, DS2 Down syndrome Trisomy 21 Fibroblast 1 Y, 1 M Male

PD Parkinson disease Multifactorial Fibroblast 57 Y Male

JDM Juvenile diabetes mellitus Multifactorial Fibroblast 42 Y Female

SBDS Swachman-Bodian-Diamond

syndrome

IV2 + 2T > C and IV3 � 1G > A, SBDS

gene

Bone marrow mesenchymal

cells

4 M Male

HD Huntington disease 72 CAG repeats, huntingtin gene Fibroblast 20 Y Female

LNSc Lesch-Nyhan syndrome (carrier) Heterozygosity of HPRT1 Fibroblast 34 Y Female
destined to have limited utility. In contrast, introducing a set of

transcription factors linked to pluripotency can directly repro-

gram human somatic cells to produce induced pluripotent

stem (iPS) cells, a method that has been achieved by several

groups worldwide (Lowry et al., 2008; Park et al., 2008b; Taka-

hashi et al., 2007; Yu et al., 2007). Given the robustness of the

approach, direct reprogramming promises to be a facile source

of patient-derived cell lines. Such lines would be immediately

valuable for medical research, but current methods for reprog-

ramming require infecting the somatic cells with multiple viral

vectors, thereby precluding consideration of their use in trans-

plantation medicine at this time.

Human cell culture is an essential complement to research with

animal models of disease. Murine models of human congenital

and acquired diseases are invaluable but provide a limited repre-

sentation of human pathophysiology. Murine models do not al-

ways faithfully mimic human diseases, especially for human con-

tiguous gene syndromes such as trisomy 21 (Down syndrome or

DS). A mouse model for the DS critical region on distal human

chromosome 21 fails to recapitulate the human cranial abnormal-

ities commonly associated with trisomy 21 (Olson et al., 2004).

Orthologous segments to human chromosome 21 are present

on mouse chromosomes 10 and 17, and distal human chromo-

some 21 corresponds to mouse chromosome 16 where trisomy

16 in the mouse is lethal (Nelson and Gibbs, 2004). Thus, a true

murine equivalent of human trisomy 21 does not exist. Murine

strains carrying the same genetic deficiencies as the human

bone marrow failure disease Fanconi anemia demonstrate DNA

repair defects consistent with the human condition (e.g., Chen

et al., 1996), yet none develop the spontaneous bone marrow

failure that is the hallmark of the human disease.

For cases where murine and human physiology differ, dis-

ease-specific pluripotent cells capable of differentiation into

the various tissues affected in each condition could undoubtedly

provide new insights into disease pathophysiology by permitting

analysis in a human system, under controlled conditions in vitro,

using a large number of genetically modifiable cells, and in

a manner specific to the genetic lesions in each whether known

or unknown. Here, we report the derivation of human iPS cell

lines from patients with a range of human genetic diseases.
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RESULTS AND DISCUSSION

Dermal fibroblasts or bone marrow-derived mesenchymal cells

were obtained from patients with a prior diagnosis of a specific

disease and used to establish disease-specific lines of human

iPS cells (Table 1). This initial cohort of cell lines was derived

from patients with Mendelian or complex genetic disorders, in-

cluding Down syndrome (DS; trisomy 21); adenosine deami-

nase deficiency-related severe combined immunodeficiency

(ADA-SCID); Shwachman-Bodian-Diamond syndrome (SBDS);

Gaucher disease (GD) type III; Duchenne type (DMD) and

Becker type (BMD) muscular dystrophy; Huntington chorea

(Huntington disease; HD); Parkinson disease (PD); juvenile-on-

set, type 1 diabetes mellitus (JDM); and Lesch-Nyhan syn-

drome (LNSc; carrier state).

Patient-derived somatic cells were transduced with either four

(OCT4, SOX2, KLF4, and c-MYC) or three reprogramming fac-

tors (lacking c-MYC). Following 2 to 3 weeks of culture in hES

cell-supporting conditions, compact refractile ES-like colonies

emerged among a background of fibroblasts, as previously de-

scribed (Park et al., 2008a, 2008b). Although our previous report

used additional factors (hTERT and SV40 LT) to achieve reprog-

ramming of adult somatic cells, we have found the four-factor

cocktail to be sufficient as long as we employ a higher multiplicity

of retroviral infection. Additionally, we generated a single line

from a carrier of Lesch-Nyhan syndrome using five doxycy-

cline-inducible lentiviral vectors (OCT4, SOX2, KLF4, c-MYC,

and NANOG), a strategy that has been used to isolate murine

iPS cells (Brambrink et al., 2008; Stadtfeld et al., 2008) but

previously had not been attempted with human somatic cells.

Characterization of the iPS cell lines is presented below.

Mutation Analysis in iPS Cell Lines
The iPS cell lines were evaluated to confirm, where possible, the

disease-specific genotype of their parental somatic cells. Analy-

sis of the karyotype of iPS cell lines derived from two individuals

with Down syndrome showed the characteristic trisomy 21

anomaly (Figure 1A). Aneuploidies such as that occurring in DS

are unambiguously associated with advanced maternal age (re-

viewed in Antonarakis et al., 2004) and, as such, are occasionally



Figure 1. Genotypic Analysis of Disease-Specific iPS Cell Lines

(A) Two different, primary fibroblast specimens, DS1 and DS2 from male patients with Down syndrome (trisomy 21), were used to derive DS1-iPS4 and

DS2-iPS10. Each has a 47, XY + 21 karyotype over several passages (G-banding analysis).

(B) Fibroblast (ADA and GBA) or bone marrow mesenchymal cells (SBDS) were used to generate iPS cell lines. Mutated alleles identical to the original specimens

were verified by DNA sequencing. Adenosine deaminase deficiency line ADA-iPS2 is a compound heterozygote: GGG to GAA double transition in exon 7 of one

allele (G216R substitution); the second allele is an exon 10 frameshift deletion (-GAAGA) (Hirschhorn et al., 1993). Shwachman-Bodian-Diamond syndrome line

SBDS-iPS8 is also a compound heterozygote: point mutations at the IV2 + 2T > C intron 2 splice donor site and an IVS3 � 1G > A mutation of the SBDS gene

(Austin et al., 2005). GD-iPS3 (Gaucher disease type III): a 1226A > G point mutation (N370S substitution) and a guanine insertion at nucleotide 84 of the cDNA

(84GG) (Beutler et al., 1991).

(C) Fibroblasts from patients diagnosed with either Duchenne (DMD) or Becker type muscular dystrophy (BMD): DMD-iPS1 has a deletion over exons 45–52 (mul-

tiplex PCR for the dystrophin gene). We could not determine a deletion in BMD-iPS1 using two different multiplex PCR sets though these assays do not cover the

entire coding region. DMD2 is a patient control (exon 4 deletion). The control is genomic DNA from a healthy volunteer. Huntington disease (HD) is caused by

a trinucleotide repeat expansion within the huntingtin locus. DNA sequencing shows that HD-iPS1 has one normal (<35 repeats) and one expanded allele (72

repeats). HD2 is a positive control from a second Huntington patient with one normal and one expanded allele (54 repeats). The control is genomic DNA from

a healthy volunteer.
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detected in the preimplantation embryo when in vitro fertilization

(IVF) is coupled with PGD. While it is possible that a discarded

IVF embryo found to have trisomy 21 could be donated to at-

tempt hES cell derivation, it is important to point out that many

gestating DS embryos do not survive the prenatal period.

Some studies place the frequency of spontaneous fetal demise

(miscarriage) in DS to be above 40% (Bittles et al., 2007).

Thus, the derivation of a human iPS cell line with trisomy 21

from an existing individual may be preferable, as such a line is

most likely to harbor the complex genetic and epigenetic modi-

fiers that favor full-term gestation and, by virtue of the often

lengthy medical history, will be a more informative resource for

correlative clinical research.

Creation of iPS cell lines from patients with single-gene disor-

ders allows experiments on disease phenotypes in vitro, and an

opportunity to repair gene defects ex vivo. The resulting cells, by

virtue of their immortal growth in culture, can be extensively

characterized to ensure that gene repair is precise and specific,

thereby reducing the safety concerns of random, viral-mediated

gene therapy. Repair of gene defects in pluripotent cells pro-

vides a common platform for combined gene repair and cell re-

placement therapy for a variety of genetic disorders, as long as

the pluripotent cells can be differentiated into relevant somatic

stem cell or tissue populations.

Three diseases in our cohort of iPS cells are inherited in a clas-

sical Mendelian manner as autosomal recessive congenital dis-

orders and are caused by point mutations in genes essential for

normal immunologic and hematopoietic function: adenosine de-

aminase deficiency, which causes severe combined immune

deficiency (ADA-SCID) due to the absence of T cells, B cells,

and NK cells; Shwachman-Bodian-Diamond syndrome, a con-

genital disorder characterized by exocrine pancreas insuffi-

ciency, skeletal abnormalities, and bone marrow failure; and

Gaucher disease type III, an autosomal recessive lysosomal

storage disease characterized by pancytopenia and progressive

neurological deterioration due to mutations in the acid beta-glu-

cosidase (GBA) gene. Sequence analysis of the ADA gene in the

disease-associated ADA-iPS2 cell line revealed a compound

heterozygote: a GGG to GAA transition mutation at exon 7, caus-

ing a G216R amino acid substitution (Figure 1B); the other allele

is known to have a frameshift deletion (-GAAGA) in exon 10

(Hirschhorn et al., 1993). The SBDS-iPS8 cell line harbors point

mutations at the IV2 + 2T > C intron 2 splice donor site

(Figure 1B) and IVS3� 1G > A mutation (Austin et al., 2005). Mo-

lecular analysis of the GBA gene in the Gaucher disease line re-

vealed a 1226A > G point mutation, causing a N370S amino acid

substitution (Figure 1B); the second allele is known to have a fra-

meshifting insertion of a single guanine at cDNA nucleotide 84

(84GG) (Beutler et al., 1991). The Lesch-Nyhan syndrome carrier

line harbors heterozygous deficiency of the HPRT gene (Nuss-

baum et al., 1983).
Two lines were derived from dermal fibroblasts cultured from

patients with muscular dystrophy. Multiplex PCR analysis with

primer sets amplifying several (but not all) intragenic intervals

of the dystrophin gene (Beggs et al., 1990; Chamberlain et al.,

1988) revealed the deletion of exons 45–52 in the iPS cells de-

rived from a patient with Duchenne muscular dystrophy (DMD;

Figure 1C). Despite analysis for gross genomic defects by multi-

plex PCR, a deletion was not detected in iPS cells derived from

a patient with Becker type muscular dystrophy (BMD; Figure 1C).

As BMD is a milder form of disease, and the dystrophin gene one

of the largest in the human genome, definition of the genetic le-

sion responsible for this condition is sometimes elusive (Prior

and Bridgeman, 2005).

Given that numerous groups have pioneered the directed dif-

ferentiation of neuronal subtypes, and that genetically defined

ES cells from animal models of amyotrophic lateral sclerosis

have revealed important insights into the pathophysiology of mo-

tor neuron deterioration (Di Giorgio et al., 2007), there is consid-

erable interest in generating iPS cell lines from patients afflicted

with neurodegenerative disease. We generated iPS cell lines

from a patient with Huntington chorea (Huntington disease;

HD) and verified the presence of expanded (CAG)n polyglut-

amine triplet repeat sequences (72) in the proximal portion of

the huntingtin gene (Figure 1C; Riess et al., 1993) in one allele

and 19 repeats in the other (where the normal range is 35 or

less; Chong et al., 1997).

Pluripotent cell lines will likewise be valuable for studying neu-

rodegenerative conditions with more complex genetic predispo-

sition, as well as metabolic diseases known to have familial pre-

dispositions but for which the genetic contribution remains

unexplained. We have generated lines from a patient diagnosed

with Parkinson disease (PD) and another from a patient with ju-

venile-onset (type I) diabetes mellitus (Table 1). Given that these

conditions lack a defined genetic basis, genotypic verification is

impossible at this time.

The Lesch-Nyhan syndrome is caused by mutations in hypo-

xanthine-guanine phosphoribosyltransferase (HPRT), an X-

linked enzyme in purine metabolism that when deficient leads

to abnormal accumulation of uric acid and a neurologic disorder

characterized by cognitive deficits and self-mutilating behavior.

Cells carrying either intact or deficient HPRT enzyme function

can be selectively cultured in media containing hypoxanthine-

Aminopterin-Thymidine (HAT) or 6-thioguanine (6-TG), respec-

tively. Strategies for inducing specific mutation or gene repair

by homologous recombination were first established for the

HPRT locus (Doetschman et al., 1987, 1988; Thomas and Ca-

pecchi, 1987). We have generated an iPS cell line from a female

carrier (LNSc-iPS2) that will be a valuable resource for studies of

homologous recombination in iPS cells and for analysis of X

chromosome reactivation during reprogramming and random

inactivation with differentiation.
Figure 2. Disease-Specific iPS Cell Lines Exhibit Markers of Pluripotency

ADA-iPS2, GD-iPS1, DMD-iPS1, BMD-iPS1, DS1-iPS4, DS2-iPS10, PD-iPS1, JDM-iPS1, SBDS-iPS1, HD-iPS4, and LNSc-iPS2 were established from fibroblast

or mesenchymal cells (Table 1). Disease-specific iPS cell lines maintain a morphology similar to hES cells when grown in coculture with mouse embryonic feeder

fibroblasts (MEFs). Disease-specific iPS cells express alkaline phosphatase (AP). Also, as shown here via immunohistochemistry, disease-specific cells express

pluripotency markers including Tra-1–81, NANOG, OCT4, Tra-1-60, SSEA3, and SSEA4. 4,6-Diamidino-2-phenylindole (DAPI) staining is shown at right and

indicates the total cell content per image.
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Figure 3. Expression of Pluripotency-Associated Genes Is Elevated in Disease-Specific iPS Cell Lines Relative to Their Somatic Cell Controls

In each panel, quantitative real-time PCR (RT-PCR) assay for OCT4, SOX2, NANOG, REX1, GDF3, and hTERT indicates increased expression in patient-specific

iPS cells relative to parent cell lines while expression of KLF4 and cMYC remains largely unchanged. PCR reactions were normalized against internal controls

(b-ACTIN) and plotted relative to expression levels in their individual parent fibroblast cell lines.

(A) the human iPS cell lines ADA-iPS2 and -iPS3 are derived from the adenosine deaminase deficiency-severe combined immunodeficiency fibroblast line ADA.

(B) GD-iPS1 and -iPS3 are derived from the Gaucher disease type III fibroblast line GD.

(C) DMD-iPS1 and -iPS2 are derived from the Duchenne muscular dystrophy fibroblast line DMD.

(D) BMD-iPS1 and -iPS4 are derived from the Becker muscular dystrophy line BMD.

(E) DS1-iPS4 is derived from the Down syndrome fibroblast line DS1.

(F) DS2-iPS1 and -iPS10 are derived from the Down syndrome fibroblast line DS2.

(G) PD-iPS1 and -iPS5 are derived from the Parkinson disease fibroblast line PD.

(H) JDM-iPS2 and -iPS4 are derived from the juvenile-onset, type 1 diabetes mellitus line JDM.

(I) SBDS-iPS1 and -iPS3 are derived from the Shwachman-Bodian-Diamond syndrome bone marrow mesenchymal fibroblast line SBDS.

(J) HD-iPS4 and -iPS11 are derived from the Huntington disease fibroblast line HD.

(K) LNSc-iPS1 and -iPS2 are derived from the Lesch-Nyhan syndrome carrier fibroblast line LNSc.

(L) Detroit 551 human fibroblasts are used as the standard here in order to demonstrate the previously described expression pattern in Detroit 551-derived iPS

cells (551-iPS8) relative to two bona fide hES cell lines: H1-OGN and BG01.
Characterization of Disease-Specific iPS Cell Lines
All iPS cell colonies, which were selected based on their mor-

phologic resemblance to colonies of ES cells, demonstrated

compact colony morphology and markers of pluripotent cells,
882 Cell 134, 877–886, September 5, 2008 ª2008 Elsevier Inc.
including alkaline phosphatase (AP), Tra-1–81, Tra-1–60, OCT4,

NANOG, SSEA3, and SSEA4 (Figure 2). Quantitative RT-PCR in-

dicated the expression of pluripotency-related genes including

OCT4, SOX2, NANOG, REX1, GDF3, and hTERT regardless of



Figure 4. Pluripotency-Promoting Genes Are Chiefly Expressed from the Endogenous Loci in Disease-Specific iPS Cell Lines, While the

Virally Delivered Transgene Is Predominantly Silenced

The disease-specific iPS cell lines shown here are preceded by their parental fibroblast controls (from left to right at top): adenosine deaminase deficiency-as-

sociated severe combined immunodeficiency (ADA), Becker muscular dystrophy (BMD), Parkinson disease (PD), juvenile type 1 diabetes mellitus (JDM), Hun-

tington disease (HD), Detroit 551 control cells, Duchenne muscular dystrophy (DMD), Shwachman-Bodian-Diamond syndrome (SBDS), Down syndrome (DS),

Gaucher disease type III (GD), and Lesch-Nyhan syndrome carrier (LNSc). The semiquantitative expression (RT-PCR) of the four pluripotency-promoting genes

used in the reprogramming process, OCT4, SOX2, cMYC, KLF4, and NANOG is shown for each line using amplification conditions specific to the endogenous

(Endo) or virally delivered transgene (Trans) as well as the total expression for each (Total). b-ACTIN is shown at the bottom as a loading control for each lane.
the genetic condition represented within the parental somatic

cells (Figure 3; control lines are shown in panel L). Retroviral

transgenes were largely silenced in the iPS cell lines, with ex-

pression of the relevant reprogramming factors assumed by en-

dogenous loci (Figure 4), as described (Park et al., 2008b). PCR-

based DNA fingerprint analysis using a highly variable number of

tandem repeats (VNTR) confirmed that the iPS cell lines were ge-

netically matched to their parental somatic lines, ruling out the

possibility of crosscontamination from existing cultures of hu-

man pluripotent cells (Figure S1 available online). Also, iPS cells

showed normal 46 XX or 46 XY karyotypes (Figure S2).

Human disease-associated iPS cell lines were characterized

by a standard set of assays to confirm pluripotency and multili-

neage differentiation. iPS cell lines (n = 7) were allowed to differ-

entiate in vitro into embryoid bodies as described (Park et al.,

2008b), and their potential to develop along specific lineages

was confirmed by PCR for markers of all three embryonic germ

layers (ectoderm, mesoderm, and endoderm; Figure 5A). Hema-

topoietic differentiation of disease-specific iPS cell lines (n = 2)

produced myeloid and erythroid colony types (Figure 5B). The ul-

timate standard of pluripotency for human cells is teratoma for-

mation in immunodeficient murine hosts (Lensch et al., 2007).

When injected intramuscularly into immunodeficient Rag2�/�

gC�/� mice, disease-specific iPS cell lines (n = 7) produced

mature, cystic masses representing all three embryonic germ

layers (Figure 6).
The technique of factor-based reprogramming of somatic

cells generates pluripotent stem cell lines that are effectively im-

mortal in culture and can be differentiated into any of a multitude

of human tissues. By comparison of normal and pathologic tis-

sue formation, and by assessment of the reparative effects of

drug treatment in vitro, cell lines generated from patients offer

an unprecedented opportunity to recapitulate pathologic human

tissue formation in vitro, and a new technology platform for drug

screening. The Harvard Stem Cell Institute has committed re-

sources to establish a Core Facility for the production of dis-

ease-specific iPS cell lines, with the goal of making each of these

lines available to the biomedical research community.

EXPERIMENTAL PROCEDURES

Somatic Cell Culture, Isolation, and Culture of iPS Cells

Fibroblasts from patients with ADA-SCID (ADA, GM01390), Gaucher disease

(GD, GM00852), Duchenne type muscular dystrophy (DMD, GM04981;

DMD2, GM05089), Becker type muscular dystrophy (BMD, GM04569), Downs

syndrome (DS1, AG0539A), Parkinson disease (PD, AG20446), juvenile (type I)

diabetes mellitus (JDM, GM02416), Huntington disease (HD, GM04281; HD2,

GM01187), and Lesch-Nyhan syndrome carrier (LNSc, GM00013) were ob-

tained from Coriell. Fibroblasts from patients with Down syndrome (DS2,

DLL54) and normal fetal skin fibroblasts (Detroit 551) were purchased from

ATCC. Bone marrow mesenchymal cells from SBDS patient (SBDS, DF250)

have been described (Austin et al., 2005). Cells were grown in alpha-MEM con-

taining 10% inactivated fetal serum (IFS), 50 U/ml penicillin, 50 mg/ml strepto-

mycin, and 1 mM L-glutamine. Retroviruses expressing OCT4, SOX2, KLF4,
Cell 134, 877–886, September 5, 2008 ª2008 Elsevier Inc. 883



Figure 5. Differentiation of Disease-Spe-

cific iPS Cell Lines Reveals Lineage-

Specific Gene Expression and Mature Cell

Formation

(A) At top (from left to right) are eight iPS cell lines in

their undifferentiated (U) or differentiated (D) state.

The lines are adenosine deaminase deficiency-

associated severe combined immunodeficiency

(ADA), juvenile-onset type 1 diabetes mellitus

(JDM), Down syndrome 1 (DS1), Gaucher disease

type III (GD), Huntington disease (HD), Duchenne

muscular dystrophy (DMD), Down syndrome 2

(DS2), and normal control Detroit 551 (551) cells.

Differentiation (D) of these patient-specific iPS

cells as embryoid bodies (EB) followed by RT-

PCR analysis shows upregulated expression of

lineage markers from the three embryonic germ

layers relative to their undifferentiated controls

(U), including: GATA4 and AFP (endoderm),

RUNX1 and Brachyury (mesoderm), and NESTIN

and NCAM (ectoderm). b-ACTIN serves as a

positive amplification control for each.

(B) Differentiation of ADA-iPS2, a representative

patient-specific iPS cell line, as embryoid bodies

(EB) is highly reminiscent of that using hES cells

where tight clusters of differentiating cells are

well-formed by day 7 and will cavitate, becoming cystic, by day 10. Hematopoietic differentiation of patient-specific iPS cells yields various blood cell types

in semisolid methylcellulose colony-forming assays including burst-forming unit-erythroid (BFU-E), which are derivative of red blood cell progenitor cells.
and MYC were pseudotyped in VSVg and used to infect 1 3 105 cells in one

well of a six-well dish. iPS cells were isolated as described previously (Park

et al., 2008b). iPS cells from LNSc fibroblasts were isolated using an inducible

lentiviral system as previously described (Stadtfeld et al., 2008). cDNAs en-

coding human OCT4, SOX2, cMYC, KLF4, and NANOG were cloned into doxy-

cycline-inducible vectors and were coinfected with a lentivirus harboring a con-

stitutively expressed reverse tetracycline transactivator (rtTA). Infected

fibroblasts were split to feeders under hES culture conditions. Doxycycline

was added to the culture for 30 days and then withdrawn. Colonies that ap-

peared were picked and expanded into lines in the absence of doxycycline.

iPS cell colonies were maintained in hES medium (80% DMEM/F12, 20%

KO Serum Replacement,10 ng/ml bFGF, 1 mM L-glutamine, 100 mM nones-

sential amino acids, 100 mM 2-mercaptoethanol, 50 U/ml penicillin, and

50 mg/ml streptomycin).

Characterization of Genetic Defects in iPS Cells

Genomic DNA was isolated from cells using DNeasy kit (QIAGEN). PCR reac-

tions were performed using 50 ng of genomic DNA with primers corresponding

to the mutated regions of genes responsible for each condition (ADA-SCID,

GD, SBDS [Calado et al., 2007], and HD). Primer sequences are provided in

Table S1. PCR products were resolved via agarose gels, purified and se-

quenced, or cloned into the TOPO vector (Invitrogen) for sequencing. The

number of CAG repeats in the HD gene was determined by amplifying the 50

end of the huntingtin gene by PCR and sequencing. The deletion of exons

within the dystrophin gene in DMD-iPS cells and BMD-iPS cells was deter-

mined by PCR using Chamberlain or Beggs’ multiplex primer sets (Beggs

et al., 1990; Chamberlain et al., 1988).

Karyotype Analysis

Chromosomal studies including karyotype of trisomy 21 in DS1-iPS and DS2-

iPS10 cells were performed at the Cytogenetics Core of the Dana-Farber/Har-

vard Cancer Center or Cell Line Genetics using standard protocols for high-

resolution G-banding.

Fingerprinting Analysis

Fifty nanograms of genomic DNA was used to amplify across discrete genomic

intervals containing highly variable numbers of tandem repeats (VNTR). PCR
884 Cell 134, 877–886, September 5, 2008 ª2008 Elsevier Inc.
products were resolved in 3% agarose gels to examine the differential ampli-

con mobility for each primer set: D10S1214, repeat (GGAA)n, average hetero-

zygosity 0.97; D17S1290, repeat (GATA)n, average heterozygosity 0.84;

D7S796, repeat (GATA)n, average heterozygosity 0.95; and D21S2055, repeat

(GATA)n, average heterozygosity 0.88 (Invitrogen).

Immunohistochemistry and AP Staining of iPS Cells

iPS cells grown on feeder cells were fixed in 4% paraformaldehyde for 20 min,

permeabilized with 0.2% Triton X-100 for 30 min, and blocked in 3% BSA in

PBS for 2 hr. Cells were incubated with primary antibody overnight at 4�C,

washed, and incubated with Alexa Fluor (Invitrogen) secondary antibody for

3 hr. SSEA-3, SSEA-4, TRA 1–60, and TRA 1–81 antibodies were obtained

from Millipore. OCT3/4 and NANOG antibodies were obtained from Abcam. Al-

kaline phosphatase staining was done per the manufacturer’s recommenda-

tions (Millipore).

Analysis of Gene Expression

Total RNA was isolated from iPS cells using an RNeasy kit (QIAGEN) according

to the manufacturer’s protocol. 0.5 mg of RNA was subjected to the RT reaction

using Superscript II (Invitrogen). Quantitative PCR was performed with Brilliant

SYBR Green Master MiX in Stratagene MX3000P machine using previously

described primers (Park et al., 2008b). Semiquantitative PCR was performed

to look at the expression of total, endogenous, and recombinant pluripotency

genes, as well as genes representing the three embryonic germ layers, using

primers described previously and in Table S1.

Differentiation of iPS Cells

iPS cells were washed with DMEM/F12, treated with collagenase for 10 min,

and collected by scraping. Colonies were washed once with DMEM/F12 and

gently resuspended in EB differentiation medium. EBs were differentiated

with low-speed shaking and the medium was changed every 3 days. After 2

weeks of differentiation, EBs were dissociated and plated in MethoCult

(Stem Cell Technologies).

Teratoma Formation from iPS Cells

iPS cells were washed with DMEM/F12, treated with collagenase for 10 min

at room temperature, scraped using glass pipette, and collected by



centrifugation. Cells were washed once with DMEM/F12 and mixed with Ma-

trigel (BD Biosciences) and collagen (Sigma). 2 3 106 cells were intramuscu-

larly injected into immune-deficient Rag2�/�gC�/� mice. After 6 weeks of in-

jection, teratomas were dissected, rinsed once with PBS, and fixed in 10%

formalin. Embedding in paraffin, sectioning of tissue, and hematoxylin/eosin

staining were performed by the Rodent Histopathology service of the Dana-

Farber Cancer Institute.

Figure 6. Disease-Specific iPS Cell Lines Form Teratomas in Immu-

nodeficient Mice

Shown here are the representative series of hematoxylin-eosin (H&E) stained

sections from a formalin-fixed teratoma produced from ADA-iPS2, BMD-

iPS1, DS1-iPS4, HD-iPS1, PD-iPS1, SBDS-iPS3, and JDM-iPS1 cell lines.

They formed mature, cystic teratomas with tissues representing all three em-

bryonic germ layers including respiratory epithelium (endoderm), bone and

cartilage (mesoderm), and pigmented retinal epithelium and immature neural

tissue (ectoderm).
SUPPLEMENTAL DATA

Supplemental Data include two figures and one table and can be found with

this article online at http://www.cell.com/cgi/content/full/134/5/877/DC1/.
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